

مجلس الأمان السيبراني
CYBER SECURITY COUNCIL

United Arab Emirates

Cyber Espionage Targeting Networks Worldwide

Tracking #:432317652

Date:29-08-2025

THE INFORMATION CONTAINED WITHIN IS THE PROPERTY OF THE CYBER SECURITY COUNCIL OF THE UNITED ARAB EMIRATES GOVERNMENT AND IS TO BE USED EXCLUSIVELY FOR INTELLIGENCE PURPOSES. IT MAY NOT BE USED IN ANY LEGAL OR PUBLIC MATTER WITHOUT THE EXPLICIT APPROVAL OF THE CYBER SECURITY COUNCIL

EXECUTIVE SUMMARY:

The UAE Cyber Security Council has observed Chinese Advanced Persistent Threat (APT) actors have conducted widespread, persistent cyber espionage campaigns since at least 2021, targeting global networks—telecommunications, government, transportation, lodging, and military infrastructure.

TECHNICAL DETAILS:

Chinese Advanced Persistent Threat (APT) actors have conducted widespread, persistent cyber espionage campaigns since at least 2021, targeting global networks—telecommunications, government, transportation, lodging, and military infrastructure. These actors focus on backbone and edge routers but also pivot into other network segments using compromised devices and trusted connections. Their tactics include exploiting network device vulnerabilities, establishing persistent access, collecting sensitive data, and exfiltrating information via covert channels, sometimes leveraging custom tools and novel protocols. Their activities impact the United States, Australia, Canada, New Zealand, the United Kingdom, and several other countries globally.

Exploited CVEs:

The following vulnerabilities have been actively exploited:

- CVE-2024-21887 Ivanti Connect Secure Command injection, chained after CVE-2023-46805
- CVE-2024-3400 Palo Alto PAN-OS Arbitrary file creation; enables RCE on firewalls (GlobalProtect)
- CVE-2023-20273 Cisco IOS XE Command injection/privilege escalation (chained w/CVE-2023-20198)
- CVE-2023-20198 Cisco IOS XE Authentication bypass—creates admin accounts
- CVE-2018-0171 Cisco IOS/IOS XE Smart Install remote code execution vulnerability

Tactics, Techniques, and Procedures (TTPs)

- Initial Access: Exploit public-facing CVEs, leverage trusted relationships between providers for lateral movement.
- Persistence: Modify ACLs, open/abuse non-standard ports (SSH/SFTP/HTTP), create local accounts, deploy persistent containers (e.g., Cisco Guest Shell), manipulate SNMP configurations, and establish tunnels (GRE, IPsec).
- Defense Evasion: Obfuscate commands, clear logs, disable or modify logging, use double encoding, delete artifacts, and abuse hosting features.
- Data Collection and Exfiltration: Collect and exfiltrate network captures (PCAP), redirect authentication servers, manipulate AAA, utilize custom SFTP clients, and leverage multi-hop proxies/tools for C2 and data transfer.

Indicators of Compromise (IOCs)

IP-based indicators

The following IP indicators were associated with the APT actors' activity from August 2021 to June 2025. Disclaimer: Several of these observed IP addresses were first observed as early as August 2021 and may no longer be in use by the APT actors.

It is recommended organizations investigate or vet these IP addresses prior to taking action, such as blocking.

Table 3: APT-associated IP-based Indicators, August 2021-June 2025

IP Address	IP Address	IP Address	IP Address
1.222.84[.]29	167.88.173[.]252	37.120.239[.]52	45.61.159[.]25
103.168.91[.]231	167.88.173[.]58	38.71.99[.]145	45.61.165[.]157
103.199.17[.]238	167.88.175[.]175	43.254.132[.]118	5.181.132[.]95
103.253.40[.]199	167.88.175[.]231	45.125.64[.]195	59.148.233[.]250
103.7.58[.]162	172.86.101[.]123	45.125.67[.]144	61.19.148[.]66
104.194.129[.]137	172.86.102[.]83	45.125.67[.]226	63.141.234[.]109
104.194.147[.]15	172.86.106[.]15	45.146.120[.]210	63.245.1[.]13
104.194.150[.]26	172.86.106[.]234	45.146.120[.]213	63.245.1[.]34
104.194.153[.]181	172.86.106[.]39	45.59.118[.]136	74.48.78[.]66
104.194.154[.]150	172.86.108[.]11	45.59.120[.]171	74.48.78[.]116
104.194.154[.]222	172.86.124[.]235	45.61.128[.]29	74.48.84[.]119
107.189.15[.]206	172.86.65[.]145	45.61.132[.]125	85.195.89[.]94
14.143.247[.]202	172.86.70[.]73	45.61.133[.]157	89.117.1[.]147
142.171.227[.]16	172.86.80[.]15	45.61.133[.]31	89.117.2[.]39
144.172.76[.]213	190.131.194[.]90	45.61.133[.]61	89.41.26[.]142
144.172.79[.]4	193.239.86[.]132	45.61.133[.]77	91.231.186[.]227
146.70.24[.]144	193.239.86[.]146	45.61.133[.]79	91.245.253[.]99
146.70.79[.]68	193.43.104[.]185	45.61.134[.]134	2001:41d0:700:65dc:f656929f
146.70.79[.]78	193.56.255[.]209	45.61.134[.]22	2a10:1fc0:7::f19c[:39b3
146.70.79[.]81	193.56.255[.]210	45.61.134[.]223	
164.82.20[.]53	212.236.17[.]237	45.61.149[.]200	
167.88.164[.]166	23.227.196[.]22	45.61.149[.]62	
167.88.172[.]70	23.227.199[.]77	45.61.151[.]12	
167.88.173[.]158	23.227.202[.]253	45.61.154[.]130	

Custom SFTP client

The APT actors also use a custom SFTP client, which is a Linux binary written in Golang, to transfer encrypted archives from one location to another. The following SFTP client binaries are similar in that they are used to transfer files from a compromised network to staging hosts where the files are prepared for exfiltration. However, cmd1 has the additional capability of collecting network packet captures on the compromised network.

File Name cmd3

MD5 Hash	eba9ae70d1b22de67b0eba160a6762d8
SHA 256 Hash	8b448f47e36909f3a921b4ff803cf3a61985d8a10f0fe594b405b92ed0fc 21f1

File Name cmd1

MD5 Hash	33e692f435d6cf3c637ba54836c63373
SHA 256 Hash	f2bbba1ea0f34b262f158ff31e00d39d89bbc471d04e8fca60a034cabe18 e4f4

RECOMMENDATIONS:

- Patch all network edge devices for listed CVEs and review vulnerability status against the Known Exploited Vulnerabilities Catalog.
- Audit device configurations and logs for unauthorized changes: suspicious ACLs, virtual

containers, unexpected tunnels, external TACACS+/RADIUS servers, and capture/mirroring commands.

- Change all default credentials, especially for networking equipment and SNMP community strings, enforce strong cryptography (Type 8/Type 6 for Cisco), and remove weak/deprecated password storage schemes.
- Isolate management networks (dedicated out-of-band management VRF), block unnecessary egress, restrict inbound access to management IPs.
- Enforce logging and auditing: Send logs securely to central servers, track privileged command usage, and retain logs per regulatory standards.
- Monitor for custom SFTP clients and use provided Yara rules for detection.
- Disable unused services and ports; only allow encrypted/authenticated protocols (SSH/SFTP/HTTPS), disable Telnet/FTP/HTTP where possible.
- Restrict and audit SNMP access, enforce SNMPv3, update community strings frequently, monitor SNMP SET operations, and limit write access.
- Harden VPNs, configure strong cryptographic policies, review IKE and Diffie-Hellman group settings, and eliminate unused/default configurations.
- Disable Cisco Smart Install and centralized management features not needed; monitor for unexpected Guest Shell activity and restrict container enablement commands to authorized roles.
- Protect against lateral movement by restricting device-to-device logins and monitoring internal FTP/TFTP usage.
- Perform regular integrity checks of device firmware and storage, comparing hashes against vendor databases.

Kindly circulate this information to your subsidiaries and partners as well as share with us any relevant information and findings.

The UAE Cyber Security Council extends its appreciation for the continued collaboration.

REFERENCES:

- https://www.cisa.gov/sites/default/files/2025-08/CSA_COUNTERING_CHINA_STATE_ACTORS_COMPROMISE_OF_NETWORKS.pdf